The Eulerian distribution on self evacuated involutions
نویسندگان
چکیده
We present an extensive study of the Eulerian distribution on the set of self evacuated involutions, namely, involutions corresponding to standard Young tableaux that are fixed under the Schützenberger map. We find some combinatorial properties for the generating polynomial of such distribution, together with an explicit formula for its coefficients. Afterwards, we carry out an analogous study for the subset of self evacuated involutions without fixed points.
منابع مشابه
The Eulerian distribution on centrosymmetric involutions
We present an extensive study of the Eulerian distribution on the set of centrosymmetric involutions, namely, involutions in Sn satisfying the property σ(i) + σ(n+ 1− i) = n+ 1 for every i = 1 . . . n. We find some combinatorial properties for the generating polynomial of such distribution, together with an explicit formula for its coefficients. Afterwards, we carry out an analogous study for t...
متن کاملThe signed Eulerian numbers on involutions
We de ne an analog of signed Eulerian numbers fn,k for involutions of the symmetric group and derive some combinatorial properties of this sequence. In particular, we exhibit both an explicit formula and a recurrence for fn,k arising from the properties of its generating function.
متن کاملOn the Eulerian Enumeration of Involutions
We consider in this work the enumeration of involutions by descent sets, and based on that, by descent numbers. Formulas of the number of involutions with a prescribed descent set, with a prescribed descent number and Frobenius-type formulas are given.
متن کاملThe Eulerian distribution on involutions is indeed unimodal
Let In,k (respectively, Jn,k) be the number of involutions (respectively, fixed-point free involutions) of {1, . . . , n} with k descents. Motivated by Brenti’s conjecture which states that the sequence In,0, In,1, . . . , In,n−1 is log-concave, we prove that the two sequences In,k and J2n,k are unimodal in k, for all n. Furthermore, we conjecture that there are nonnegative integers an,k such t...
متن کاملPermutation statistics on involutions
In this paper we look at polynomials arising from statistics on the classes of involutions, In, and involutions with no fixed points, Jn, in the symmetric group. Our results are motivated by F. Brenti’s conjecture [3] which states that the Eulerian distribution of In is logconcave. Symmetry of the generating functions is shown for the statistics d, maj and the joint distribution (d, maj). We sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008